Exercise 66

Two curves are orthogonal if their tangent lines are perpendicular at each point of intersection. Show that the given families of curves are orthogonal trajectories of each other; that is, every curve in one family is orthogonal to every curve in the other family. Sketch both families of curves on the same axes.

$$
x^{2}+y^{2}=a x, \quad x^{2}+y^{2}=b y
$$

Solution

The points of intersection are found by solving the system of equations for x and y.

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=a x \\
x^{2}+y^{2}=b y
\end{array}\right.
$$

Subtract the respective sides of each equation to eliminate the squared terms.

$$
0=a x-b y
$$

Differentiate both sides of the given equations with respect to x.

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(a x) \quad \frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(b y)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
2 x+2 y \frac{d y}{d x}=a \quad 2 x+2 y \frac{d y}{d x}=b \frac{d y}{d x}
$$

Solve each equation for $d y / d x$.

$$
\begin{array}{rr}
2 y \frac{d y}{d x}=a-2 x & (2 y-b) \frac{d y}{d x}=-2 x \\
\frac{d y}{d x}=\frac{a-2 x}{2 y} & \frac{d y}{d x}=-\frac{2 x}{2 y-b}
\end{array}
$$

Check to see that these slopes are negative reciprocals.

$$
\begin{gathered}
-\frac{2 y}{a-2 x} \stackrel{?}{=}-\frac{2 x}{2 y-b} \\
\frac{y}{a-2 x} \stackrel{?}{=} \frac{x}{2 y-b} \\
y(2 y-b) \stackrel{?}{=} x(a-2 x) \\
2 y^{2}-b y \stackrel{?}{=} a x-2 x^{2} \\
2 x^{2}+2 y^{2} \stackrel{?}{=} a x+b y
\end{gathered}
$$

Continue the simplification.

$$
\begin{aligned}
2\left(x^{2}+y^{2}\right) & \stackrel{?}{=} a x+b y \\
2(b y) & \stackrel{?}{=} a x+b y \\
0 & \stackrel{?}{=} a x-b y \\
0 & =0
\end{aligned}
$$

The slopes are negative reciprocals at the points of intersection; therefore, the familes of curves defined by $x^{2}+y^{2}=a x$ and $x^{2}+y^{2}=b y$ are orthogonal trajectories. Observe that at all points of intersection the tangent lines to the members of each family of curves are orthogonal.

